Five Lines Menu close close email UF Watermark Logo Journeys Begin Here Gator Good

Publications

  1. Tripathi, P.; Mousa, J. J.; Guntaka, N. S.; Bruner, S. D. Structural Basis of the Amidase ClbL Central to the Biosynthesis of the Genotoxin Colibactin. Acta Crystallogr., Sect. D: Struct. Biol. 2023, 79 (9), 830–836. https://doi.org/10.1107/s2059798323005703.
  2. Van Gelder, K.; Oliveira-Filho, E. R.; García-García, J. D.; Hu, Y.; Bruner, S. D.; Hanson, A. D. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases. ACS Synth. Biol. 2023, 12 (4), 963–970. https://doi.org/10.1021/acssynbio.2c00512.
  3. Haas, D.; Thamm, A. M.; Sun, J.; Huang, L.; Sun, L.; Beaudoin, G. A. W.; Wise, K. S.; Lerma-Ortiz, C.; Bruner, S. D.; Breuer, M.; Luthey-Schulten, Z.; Lin, J.; Wilson, M. A.; Brown, G.; Yakunin, A. F.; Kurilyak, I.; Folz, J.; Fiehn, O.; Glass, J. I.; Hanson, A. D.; Henry, C. S.; de Crécy-Lagard, V. Metabolite Damage and Damage Control in a Minimal Genome. mBio 2022, 13 (4), e01630-22. https://doi.org/10.1128/mbio.01630-22.
  4. Liu, D.; Wanniarachchi, T. N.; Jiang, G.; Seabra, G.; Cao, S.; Bruner, S. D.; Ding, Y. Biochemical and Structural Characterization of Haemophilus Influenzae Nitroreductase in Metabolizing Nitroimidazoles. RSC Chem. Biol. 2022, 3 (4), 436–446. https://doi.org/10.1039/D1CB00238D.
  5. García-García, J. D.; Van Gelder, K.; Joshi, J.; Bathe, U.; Leong, B. J.; Bruner, S. D.; Liu, C. C.; Hanson, A. D. Using Continuous Directed Evolution to Improve Enzymes for Plant Applications. Plant Physiol. 2022, 188 (2), 971–983. https://doi.org/10.1093/plphys/kiab500.
  6. Li, Q.; Zallot, R.; MacTavish, B. S.; Montoya, A.; Payan, D. J.; Hu, Y.; Gerlt, J. A.; Angerhofer, A.; de Crécy-Lagard, V.; Bruner, S. D. Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to TRNA Queuosine Is a Unique Metalloenzyme. Biochemistry 2021, 60 (42), 3152–3161. https://doi.org/10.1021/acs.biochem.1c00164.
  7. Jorge D García-García, Kristen Van Gelder, Jaya Joshi, Ulschan Bathe, Bryan J Leong, Steven D Bruner, Chang C Liu, Andrew D Hanson, Using continuous directed evolution to improve enzymes for plant applications, Plant Physiology, 2021;, kiab500, https://doi.org/10.1093/plphys/kiab500
  8. Li, G, Patel, K, Zhang, Y, Pugmire, JK, Ding, Y, Bruner, SD. Structural and biochemical studies of an iterative ribosomal peptide macrocyclase. Proteins. 2021; 1- 10. doi:10.1002/prot.26264
  9. Patel, K. P.; Silsby, L. M.; Li, G.; Bruner, S. D. Structure-Based Engineering of Peptide Macrocyclases for the Chemoenzymatic Synthesis of Microviridins. J. Org. Chem. 2021, 86 (16), 11212–11219. https://doi.org/10.1021/acs.joc.1c00785.
  10. Joshi, J.; Li, Q.; García-García, J. D.; Leong, B. J.; Hu, Y.; Bruner, S. D.; Hanson, A. D. Structure and Function of Aerotolerant, Multiple-Turnover THI4 Thiazole Synthases. Biochem. J. 2021, No. BCJ20210565. https://doi.org/10.1042/BCJ20210565.
  11. Pastore, A. J.; Teo, R. D.; Montoya, A.; Burg, M. J.; Twahir, U. T.; Bruner, S. D.; Beratan, D. N.; Angerhofer, A. Oxalate Decarboxylase Uses Electron Hole Hopping for Catalysis. J. Biol. Chem. 2021, 297 (1), 100857. https://doi.org/10.1016/j.jbc.2021.100857.
  12. Tripathi, P.; Bruner, S. D. Structural Basis for the Interactions of the Colibactin Resistance Gene Product ClbS with DNA. Biochemistry 2021, 60 (20), 1619–1625. https://doi.org/10.1021/acs.biochem.1c00201.
  13. Jenelle A. Patterson, Hai He, Jacob S. Folz, Qiang Li, Mark A. Wilson, Oliver Fiehn, Steven D. Bruner, Arren Bar-Even, Andrew D. Hanson; Thioproline formation as a driver of formaldehyde toxicity in Escherichia coliBiochem J 15 May 2020; 477 (9): 1745–1757. doi: 10.1042/BCJ20200198.
  14. Cyanobacterial Dihydroxyacid Dehydratases Are a Promising Growth Inhibition Target. Zhang, P.; MacTavish, B. S.; Yang, G.; Chen, M.; Roh, J.; Newsome, K.; Bruner, S. D.; Ding, Y. ACS Chem. Biol. 2020. doi: 10.1021/acschembio.0c00507.
  15. The metabolite repair enzyme Nit1 is a dual-targeted amidase that disposes of damaged glutathione in Arabidopsis. Niehaus TD, Patterson JA, Alexander DC, Folz JS, Pyc M, MacTavish BS, Bruner SD, Mullen RT, Fiehn O, Hanson AD. Biochemical Journal BCJ20180931 (2019). doi: 10.1042/BCJ20180931
  16. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides. Zhang Y, Chen M, Bruner SD and Ding Y. Front. Microbiol. (2018), 9:1801. doi: 10.3389/fmicb.2018.01801
  17. Investigating Saccharomyces cerevisiae alkene reductase OYE 3 by substrate profiling, X-ray crystallography and computational methods. Powell, III, Robert W.; Buteler, M. Pilar; Lenka, Sunidhi; Crotti, Michele; Santangelo, Sara; Burg, Matthew J.; Bruner, Steven; Brenna, Elisabetta; Roitberg, Adrian E.; Stewart, Jon D. Catal. Sci. Technol., 2018,8, 5003-5016. doi: 10.1039/C8CY00440D
  18. Salvage of the 5-deoxyribose byproduct of radical SAM enzymes. Beaudoin, Guillaume A.W.; Li, Qiang; Folz, Jacob; Fiehn, Oliver; Goodsell, Justin L.; Angerhofer, Alexander; Bruner, Steven D.; Hanson, Andrew D. Nat Commun. 2018 Aug 6;9(1):3105. doi: 10.1038/s41467-018-05589-4
  19. Redesigning thiamin synthesis: Prospects and potential payoffs. Hanson AD, Amthor JS, Sun J, Niehaus TD, Gregory JF 3rd, Bruner SD, Ding Y. Plant Sci. 2018 Aug;273:92-99. doi: 10.1016/j.plantsci.2018.01.019
  20. A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate. Zhang Y, Li K, Yang G, McBride JL, Bruner SD, Ding Y. Nat Commun. 2018 May 3;9(1):1780. doi: 10.1038/s41467-018-04154-3
  21. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Sun X, Winglee K, Gharaibeh RZ, Gauthier J, He Z, Tripathi P, Avram D, Bruner S, Fodor A, Jobin C. Gastroenterology. 2018 May;154(6):1751-1763.e2. doi: 10.1053/j.gastro.2018.01.042
  22. An Unusual Diphosphatase from the PhnP Family Cleaves Reactive FAD Photoproducts. Beaudoin, Guillaume A.W.; Hanson, Andrew D.; Li, Qiang; Bruner, Steven D. The Biochemical journal (2017), 475(1), 261-272. doi: 10.1042/BCJ20170817
  23. A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis. Thamm, Antje M.; Li, Gengnan; Taja-Moreno, Marlene; Gerdes, Svetlana Y.; de Creecy-Lagard, Valerie; Bruner, Steven D.; Hanson, Andrew D. Biochemical Journal (2017), 474(16), 2887-2895. doi: 10.1042/BCJ20170437
  24. ClbM is a versatile, cation-promiscuous MATE transporter found in the colibactin biosynthetic gene cluster. Mousa, Jarrod J.; Newsome, Rachel C.; Yang, Ye; Jobin, Christian; Bruner, Steven D. Biochemical and Biophysical Research Communications (2017), 482(4), 1233-1239. doi: 10.1016/j.bbrc.2016.12.018
  25. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance. Tripathi, Prabhanshu; Shine, Emilee E.; Healy, Alan R.; Kim, Chung Sub; Herzon, Seth B.; Bruner, Steven D.; Crawford, Jason M. Journal of the American Chemical Society (2017), 139(49), 17719-17722. doi: 10.1021/jacs.7b09971 [Highlighted in Nature Chemical Biology: 10.1038/nchembio.2542] [JACS spotlight: 10.1021/jacs.7b13090]
  26. Cytotoxic protein from the mushroom Coprinus comatus possesses a unique mode for glycan binding and specificity. Zhang, Peilan; Li, Kunhua; Yang, Guang; Xia, Changqing; Polston, Jane E.; Li, Gengnan; Li, Shiwu; Lin, Zhao; Yang, Li-jun; Bruner, Steven D.; et al Proceedings of the National Academy of Sciences of the United States of America (2017), 114(34), 8980-8985. doi: 10.1073/pnas.1706894114
  27. Engineered P450 biocatalysts show improved activity and regio-promiscuity in aromatic nitration. Zuo, Ran; Zhang, Yi; Jiang, Chao; Hackett, John C.; Loria, Rosemary; Bruner, Steven D.; Ding, Yousong Scientific Reports (2017), 7(1), 1-9. doi: 10.1038/s41598-017-00897-z
  28. Identification of a Novel Epoxyqueuosine Reductase Family by Comparative Genomics. Zallot, Remi; Ross, Robert; Chen, Wei-Hung; Bruner, Steven D.; Limbach, Patrick A.; de Crecy-Lagard, Valerie ACS Chemical Biology (2017), 12(3), 844-851. doi: 10.1021/acschembio.6b01100
  29. Metabolite damage and repair in metabolic engineering design. Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D. Metabolic Engineering (2017), 44, 150-159. doi: 10.1016/j.ymben.2017.10.006
  30. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. Li, Kunhua; Fielding, Elisha N.; Condurso, Heather L.; Bruner, Steven D. Acta Crystallographica, Section D: Structural Biology (2017), 73(7), 573-580. doi: 10.1107/S2059798317007045
  31. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway. Guntaka, Naga Sandhya; Healy, Alan R.; Crawford, Jason M.; Herzon, Seth B.; Bruner, Steven D. ACS Chemical Biology (2017), 12(10), 2598-2608. doi: 10.1021/acschembio.7b00479
  32. The PacC transcription factor regulates secondary metabolite production and stress response, but has only minor effects on virulence in the insect pathogenic fungus Beauveria bassiana. Luo, Zhibing; Ren, Hui; Mousa, Jarrod J.; Rangel, Drauzio E. N.; Zhang, Yongjun; Bruner, Steven D.; Keyhani, Nemat O. Environmental Microbiology (2017), 19(2), 788-802. doi: 10.1111/1462-2920.13648
  33. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity. Zuo, Ran; Zhang, Yi; Huguet-Tapia, Jose C.; Mehta, Mishal; Dedic, Evelina; Bruner, Steven D.; Loria, Rosemary; Ding, Yousong Biotechnology Journal (2016), 11(5), 624-632. doi: 10.1002/biot.201500416
  34. Crystal structure of the homocysteine methyltransferase MmuM from Escherichia coli. Li, Kunhua; Li, Gengnan; Bradbury, Louis M. T.; Hanson, Andrew D.; Bruner, Steven D. Biochemical Journal (2016), 473(3), 277-284. doi: 10.1042/BJ20150980
  35. Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases. Chen, Wei-Hung; Li, Kunhua; Guntaka, Naga Sandhya; Bruner, Steven D. ACS Chemical Biology (2016), 11(8), 2293-2303. doi: 10.1021/acschembio.6b00332
  36. Intestinal Microbiota in Inflammatory Bowel Disease and Carcinogenesis: Implication for Therapeutics. Bruner S D; Jobin C; Jobin C Clinical pharmacology and therapeutics (2016), 99(6), 585-7. doi: 10.1002/cpt.348
  37. MATE transport of the E. coli-derived genotoxin colibactin. Mousa, Jarrod J.; Yang, Ye; Tomkovich, Sarah; Shima, Ayaka; Newsome, Rachel C.; Tripathi, Prabhanshu; Oswald, Eric; Bruner, Steven D.; Jobin, Christian Nature Microbiology (2016), 1(1), 15009. doi: 10.1038/nmicrobiol.2015.9
  38. Microbial siderophore-based iron assimilation and therapeutic applications. Li, Kunhua; Chen, Wei-Hung; Bruner, Steven D. BioMetals (2016), 29(3), 377-388. doi: 10.1007/s10534-016-9935-3
  39. Structural and mechanistic diversity of multidrug transporters. Mousa, Jarrod J.; Bruner, Steven D. Natural Product Reports (2016), 33(11), 1255-1267. doi: 10.1039/c6np00006a
  40. Structural basis for precursor protein-directed ribosomal peptide macrocyclization. Li, Kunhua; Condurso, Heather L.; Li, Gengnan; Ding, Yousong; Bruner, Steven D. Nature Chemical Biology (2016), 12(11), 973-979. doi: 10.1038/nchembio.2200
  41. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Zhang, Xinxing; Li, Kunhua; Jones, Rachel A.; Bruner, Steven D.; Butcher, Rebecca A. Proceedings of the National Academy of Sciences of the United States of America (2016), 113(36), 10055-10060. doi: 10.1073/pnas.1608262113
  42. Structure and functional analysis of the siderophore periplasmic binding protein from the fuscachelin gene cluster of Thermobifida fusca. Li, Kunhua; Bruner, Steven D. Proteins: Structure, Function, and Bioinformatics (2016), 84(1), 118-128. doi: 10.1002/prot.24959
  43. Applicability of fluorescence-based sensors to the determination of kinetic parameters for O2 in oxygenases. Di Russo, Natali V.; Bruner, Steven D.; Roitberg, Adrian E. Analytical Biochemistry (2015), 475, 53-55. doi: 10.1016/j.ab.2015.01.009
  44. Bbmsn2 acts as a pH-dependent negative regulator of secondary metabolite production in the entomopathogenic fungus Beauveria bassiana. Luo, Zhibing; Li, Yujie; Mousa, Jarrod; Bruner, Steven; Zhang, Yongjun; Pei, Yan; Keyhani, Nemat O. Environmental Microbiology (2015), 17(4), 1189-1202. doi: 10.1111/1462-2920.12542
  45. Enzymatic production of hydroxymethylfurfural from fructose using a Thermotoga maritima invertase. Horenstein, Nicole A.; Bruner, Steven Douglas; Roitberg, Adrian; Polfer, Nicolas C. PCT Int. Appl. (2015), WO 2015048452 A2 20150402. https://patents.google.com/patent/WO2015048452A2/en
  46. Oxygen diffusion pathways in a cofactor-independent dioxygenase. Di Russo, Natali V.; Condurso, Heather L.; Li, Kunhua; Bruner, Steven D.; Roitberg, Adrian E. Chemical Science (2015), 6(11), 6341-6348. doi: 10.1039/C5SC01638J
  47. Structure and Mechanism of the Siderophore-Interacting Protein from the Fuscachelin Gene Cluster of Thermobifida fusca. Li, Kunhua; Chen, Wei-Hung; Bruner, Steven D. Biochemistry (2015), 54(25), 3989-4000. doi: 10.1021/acs.biochem.5b00354
  48. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Condurso, Heather L.; Bruner, Steven D. Natural Product Reports (2012), 29(10), 1099-1110. doi: 10.1039/c2np20023f
  49. Structure guided approaches toward exploiting and manipulating nonribosomal peptide and polyketide biosynthetic pathways. Condurso, Heather L.; Bruner, Steven D. Current Opinion in Chemical Biology (2012), 16(1-2), 162-169. doi: 10.1016/j.cbpa.2012.02.002
  50. Synthesis and structure confirmation of fuscachelins A and B, structurally unique natural product siderophores from Thermobifida fusca. Dimise, Eric J.; Condurso, Heather L.; Stoker, Geoffrey E.; Bruner, Steven D. Organic & Biomolecular Chemistry (2012), 10(28), 5353-5356. doi: 10.1039/c2ob26010g
  51. Enzyme catalysis: C-H activation is a Rieske business. Bruner, Steven D. Nature Chemistry (2011), 3(5), 342-343. doi: 10.1038/nchem.1038
  52. Structural Basis for Phosphopantetheinyl Carrier Domain Interactions in the Terminal Module of Nonribosomal Peptide Synthetases. Liu, Ye; Zheng, Tengfei; Bruner, Steven D. Chemistry & Biology (Cambridge, MA, United States) (2011), 18(11), 1482-1488. doi: 10.1016/j.chembiol.2011.09.018
  53. Biosynthesis: Unmasking morphine. Dimise, Eric J.; Bruner, Steven D. Nature Chemical Biology (2010), 6(4), 251-252. doi: 10.1038/nchembio.334
  54. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of ß-amino acids incorporated in secondary metabolites. Cooke, Heather A.; Bruner, Steven D. Biopolymers (2010), 93(9), 802-810. doi: 10.1002/bip.21500
  55. Complex oxidation chemistry in the biosynthetic pathways to vancomycin/teicoplanin antibiotics. Widboom, Paul F.; Bruner, Steven D. ChemBioChem (2009), 10(11), 1757-1764. doi: 10.1002/cbic.200900117
  56. Molecular Basis of Substrate Promiscuity for the SAM-Dependent O-Methyltransferase NcsB1, Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin. Cooke, Heather A.; Guenther, Elizabeth L.; Luo, Yinggang; Shen, Ben; Bruner, Steven D. Biochemistry (2009), 48(40), 9590-9598. doi: 10.1021/bi901257q
  57. Structure and chemistry of 4-methylideneimidazol-5-one containing enzymes. Cooke, Heather A.; Christianson, Carl V.; Bruner, Steven D. Current Opinion in Chemical Biology (2009), 13(4), 460-468. doi: 10.1016/j.cbpa.2009.06.013
  58. Design and characterization of mechanism-based inhibitors for the tyrosine aminomutase SgTAM. Montavon, Timothy J.; Christianson, Carl V.; Festin, Grace M.; Shen, Ben; Bruner, Steven D. Bioorganic & Medicinal Chemistry Letters (2008), 18(10), 3099-3102. doi: 10.1016/j.bmcl.2007.11.046
  59. Regiospecific O-Methylation of Naphthoic Acids Catalyzed by NcsB1, an O-Methyltransferase Involved in the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin. Luo, Yinggang; Lin, Shuangjun; Zhang, Jian; Cooke, Heather A.; Bruner, Steven D.; Shen, Ben Journal of Biological Chemistry (2008), 283(21), 14694-14702. doi: 10.1074/jbc.M802206200
  60. Structure elucidation and biosynthesis of fuscachelins, peptide siderophores from the moderate thermophile Thermobifida fusca. Dimise, Eric J.; Widboom, Paul F.; Bruner, Steven D. Proceedings of the National Academy of Sciences of the United States of America (2008), 105(40), 15311-15316. doi: 10.1073/pnas.0805451105
  61. Characterization of NcsB2 as a Promiscuous Naphthoic Acid/Coenzyme A Ligase Integral to the Biosynthesis of the Enediyne Antitumor Antibiotic Neocarzinostatin. Cooke, Heather A.; Zhang, Jian; Griffin, Meghan A.; Nonaka, Koichi; Van Lanen, Steven G.; Shen, Ben; Bruner, Steven D. Journal of the American Chemical Society (2007), 129(25), 7728-7729. doi: 10.1021/ja071886a
  62. Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases. Liu, Ye; Bruner, Steven D. ChemBioChem (2007), 8(6), 617-621. doi: 10.1002/cbic.200700010
  63. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis. Widboom, Paul F.; Fielding, Elisha N.; Liu, Ye; Bruner, Steven D. Nature (London, United Kingdom) (2007), 447(7142), 342-345. doi: 10.1038/nature05702
  64. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC. Fielding, Elisha N.; Widboom, Paul F.; Bruner, Steven D. Biochemistry (2007), 46(49), 13994-14000. doi: 10.1021/bi701148b
  65. The Mechanism of MIO-Based Aminomutases in ß-Amino Acid Biosynthesis. Christianson, Carl V.; Montavon, Timothy J.; Festin, Grace M.; Cooke, Heather A.; Shen, Ben; Bruner, Steven D. Journal of the American Chemical Society (2007), 129(51), 15744-15745. doi: 10.1021/ja0762689
  66. The structure of L-tyrosine 2,3-aminomutase from the C-1027 enediyne antitumor antibiotic biosynthetic pathway. Christianson, Carl V.; Montavon, Timothy J.; Van Lanen, Steven G.; Shen, Ben; Bruner, Steven D. Biochemistry (2007), 46(24), 7205-7214. doi: 10.1021/bi7003685
DR. BRUNER’S POST-DOCTORAL PUBLICATIONS IN THE WALSH LAB
  1. DpgC Is a Metal- and Cofactor-Free 3,5-Dihydroxyphenylacetyl-CoA 1,2-Dioxygenase in the Vancomycin Biosynthetic Pathway. Tseng, Claire C.; Vaillancourt, Frederic H.; Bruner, Steven D.; Walsh, Christopher T. Chemistry & Biology (2004), 11(9), 1195-1203. doi: 10.1016/j.chembiol.2004.06.012
  2. Type II thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. Yeh, Ellen; Kohli, Rahul M.; Bruner, Steven D.; Walsh, Christopher T. ChemBioChem (2004), 5(9), 1290-1293. doi: 10.1002/cbic.200400077
  3. Characterization of the Surfactin Synthetase C-Terminal Thioesterase Domain as a Cyclic Depsipeptide Synthase. Tseng, Claire C.; Bruner, Steven D.; Kohli, Rahul M.; Marahiel, Mohamed A.; Walsh, Christopher T.; Sieber, Stephan A. Biochemistry (2002), 41(45), 13350-13359. doi: 10.1021/bi026592a
  4. Structural Basis for the Cyclization of the Lipopeptide Antibiotic Surfactin by the Thioesterase Domain SrfTE. Bruner, Steven D.; Weber, Thomas; Kohli, Rahul M.; Schwarzer, Dirk; Marahiel, Mohamed A.; Walsh, Christopher T.; Stubbs, Milton T. Structure (Cambridge, MA, United States) (2002), 10(3), 301-310. doi: 10.1016/S0969-2126(02)00716-5
DR. BRUNER’S DOCTORAL STUDIES IN THE VERDINE LAB
  1. Product-assisted catalysis in base-excision DNA repair. Fromme, J. Christopher; Bruner, Steven D.; Yang, Wei; Karplus, Martin; Verdine, Gregory L. Nature Structural Biology (2003), 10(3), 204-211. doi: 10.1038/nsb902
  2. Coupling of Substrate Recognition and Catalysis by a Human Base-Excision DNA Repair Protein. Norman, Derek P. G.; Bruner, Steven D.; Verdine, Gregory L. Journal of the American Chemical Society (2001), 123(2), 359-360. doi: 10.1021/ja003144m
  3. Selective inhibition of herpes simplex virus type-1 uracil-DNA glycosylase by designed substrate analogs. Sekino, Yukiko; Bruner, Steven D.; Verdine, Gregory L. Journal of Biological Chemistry (2000), 275(47), 36506-36508. doi: 10.1074/jbc.C000585200
  4. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Bruner, Steven D.; Norman, Derek P. G.; Verdine, Gregory L. Nature (London) (2000), 403(6772), 859-866. doi: 10.1038/35002510
  5. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Bruner, Steven D.; Nash, Huw M.; Lane, William S.; Verdine, Gregory L. Current Biology (1998), 8(7), 393-403. doi: 10.1016/S0960-9822(98)70158-7
  6. How do DNA repair proteins locate damaged bases in the genome? Verdine, Gregory L.; Bruner, Steven D. Chemistry & Biology (1997), 4(5), 329-334. doi: 10.1016/S1074-5521(97)90123-X
  7. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Nash, Huw M.; Bruner, Steven D.; Schaerer, Orlando D.; Kawate, Tomohiko; Addona, Theresa A.; Spooner, Eric; Lane, William S.; Verdine, Gregory L. Current Biology (1996), 6(8), 968-980. doi: 10.1016/S0960-9822(02)00641-3
DR. BRUNER’S UNDERGRADUATE PUBLICATIONS IN THE SNAPPER LAB
  1. New Tools for Studying Vesicular-Mediated Protein Trafficking: Synthesis and Evaluation of Ilimaquinone Analogs in a Non-Radioisotope-Based Antisecretory Assay. Radeke, Heike S.; Digits, Cheryl A.; Bruner, Steven D.; Snapper, Marc L. Journal of Organic Chemistry (1997), 62(9), 2823-2831. doi: 10.1021/jo962292l
  2. Total Synthesis of (-)-Ilimaquinone. Bruner, Steven D.; Radeke, Heike S.; Tallarico, John A.; Snapper, Marc L. Journal of Organic Chemistry (1995), 60(5), 1114-15. doi: 10.1021/jo00110a010